65 research outputs found

    The Thousand Asteroid Light Curve Survey

    Full text link
    We present the results of our Thousand Asteroid Light Curve Survey (TALCS) conducted with the Canada-France-Hawaii Telescope in September 2006. Our untargeted survey detected 828 Main Belt asteroids to a limiting magnitude of g'~22.5 corresponding to a diameter range of 0.4 km <= D <= 10 km. Of these, 278 objects had photometry of sufficient quality to perform rotation period fits. We debiased the observations and light curve fitting process to determine the true distribution of rotation periods and light curve amplitudes of Main Belt asteroids. We confirm a previously reported excess in the fraction of fast rotators but find a much larger excess of slow rotating asteroids (~15% of our sample). A few percent of objects in the TALCS size range have large light curve amplitudes of ~1 mag. Fits to the debiased distribution of light curve amplitudes indicate that the distribution of triaxial ellipsoid asteroid shapes is proportional to the square of the axis-ratio, (b/a)^2, and may be bi-modal. Finally, we find six objects with rotation periods that may be less than 2 hours with diameters between 400 m and 1.5 km, well above the break-up limit for a gravitationally-bound aggregate. Our debiased data indicate that this population represents <4% of the Main Belt in the 1-10 km size range.Comment: Accepted to Icarus. Full tables to appear there in electronic format, or contact autho

    The Transient Jupiter Trojan-Like Orbit of P/2019 LD2 (ATLAS)

    Full text link
    Comet P/2019 LD2 has orbital elements currently resembling those of a Jupiter Trojan, and therefore superficially appears to represent a unique opportunity to study the volatile content and active behavior of a member of this population for the first time. However, numerical integrations show that it was previously a Centaur before reaching its current Jupiter Trojan-like orbit in 2018 July, and is expected to return to being a Centaur in 2028 February, before eventually becoming a Jupiter-family comet in 2063 February. The case of P/2019 LD2 highlights the need for mechanisms to quickly and reliably dynamically classify small solar system bodies discovered in current and upcoming wide-field surveys.Comment: 7 pages, 3 figures. Accepted for publication in Icaru

    ATLAS-TEIDE: The next generations of ATLAS units for the Teide Observatory

    Full text link
    In this work we present the design of the ATLAS unit (Asteroid Terrestrial-impact Last Alert System) that will be installed at Teide Observatory in Tenerife island (Spain). ATLAS-Teide will be built by the Instituto de Astrofisica de Canarias (IAC) and will be operated as part of the ATLAS network in the framework of an operation and science exploitation agreement between the IAC and the ATLAS team at University of Hawaii. ATLAS-Teide will be the first ATLAS unit based on commercial on the shelf (COTS) components. Its design is modular, each module (building block) consist of four Celestron RASA 11 telescopes that point to the same sky field, equipped with QHY600PRO CMOS cameras on an equatorial Direct Drive mount. Each module is equivalent to a 56cm effective diameter telescope and provides a 7.3 deg^2 field of view and a 1.26 arcsec/pix plate scale. ATLAS-Teide will consist of four ATLAS modules in a roll-off roof building. This configuration allows to cover the same sky area of the actual ATLAS telescopes. The first ATLAS module was installed in November 2022 in an existing clamshell at the TO. This module (ATLAS-P) is being used as a prototype to test the system capabilities, develop the needed software (control, image processing, etc.) and complete the fully integration of ATLAS-Teide in the ATLAS network. The preliminary results of the tests are presented here, and the benefits of the new ATLAS design are discussed.Comment: 5 pages, 8 figures, Conference pape

    Detection of Earth-impacting asteroids with the next generation all-sky surveys

    Full text link
    We have performed a simulation of a next generation sky survey's (Pan-STARRS 1) efficiency for detecting Earth-impacting asteroids. The steady-state sky-plane distribution of the impactors long before impact is concentrated towards small solar elongations (Chesley and Spahr, 2004) but we find that there is interesting and potentially exploitable behavior in the sky-plane distribution in the months leading up to impact. The next generation surveys will find most of the dangerous impactors (>140m diameter) during their decade-long survey missions though there is the potential to miss difficult objects with long synodic periods appearing in the direction of the Sun, as well as objects with long orbital periods that spend much of their time far from the Sun and Earth. A space-based platform that can observe close to the Sun may be needed to identify many of the potential impactors that spend much of their time interior to the Earth's orbit. The next generation surveys have a good chance of imaging a bolide like 2008TC3 before it enters the atmosphere but the difficulty will lie in obtaining enough images in advance of impact to allow an accurate pre-impact orbit to be computed.Comment: 47 pages, 16 figures, 2 table

    A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS)

    Full text link
    The Asteroid Terrestrial-impact Last Alert System (ATLAS) carries out its primary planetary defense mission by surveying about 13000 deg^2 at least four times per night. The resulting data set is useful for the discovery of variable stars to a magnitude limit fainter than r~18, with amplitudes down to 0.01 mag for bright objects. Here we present a Data Release One catalog of variable stars based on analyzing 142 million stars measured at least 100 times in the first two years of ATLAS operations. Using a Lomb-Scargle periodogram and other variability metrics, we identify 4.7 million candidate variables which we analyze in detail. Through Space Telescope Science Institute, we publicly release lightcurves for all of them, together with a vector of 169 classification features for each star. We do this at the level of unconfirmed candidate variables in order to provide the community with a large set of homogeneously analyzed photometry and avoid pre-judging which types of objects others may find most interesting. We use machine learning to classify the candidates into fifteen different broad categories based on lightcurve morphology. About 10% (430,000 stars) pass extensive tests designed to screen out spurious variability detections: we label these as `probable' variables. Of these, 230,000 receive specific classifications as eclipsing binaries, pulsating, Mira-type, or sinusoidal variables: these are the `classified' variables. New discoveries among the probable variables number more than 300,000, while 150,000 of the classified variables are new, including about 10,000 pulsating variables, 2,000 Mira stars, and 70,000 eclipsing binaries.Comment: Accepted by AJ; gives instructions for querying ATLAS variable star database; this new version has nicer lightcurve figure

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table

    Identification of known objects in solar system surveys

    Full text link
    The discovery of new objects in modern wide-field asteroid and comet surveys can be enhanced by first identifying observations belonging to known solar system objects. The assignation of new observations to a known object is an attribution problem that occurs when a least squares orbit already exists for the object but a separate fit is not possible to just the set of new observations. In this work we explore the strongly asymmetric attribution problem in which the existing least squares orbit is very well constrained and the new data are sparse. We describe an attribution algorithm that introduces new quality control metrics in the presence of strong biases in the astrometric residuals. The main biases arise from the stellar catalogs used in the reduction of asteroid observations and we show that a simple debiasing with measured regional catalog biases significantly improves the results. We tested the attribution algorithm using data from the PS1 survey that used the 2MASS star catalog for the astrometric reduction. We found small but statistically significant biases in the data of up to 0.1 arcsec that are relevant only when the observations reach the level of accuracy made possible by instruments like PS1. The false attribution rate was measured to be < 1/1,000 with a simple additional condition that can reduce it to zero while the attribution efficiency is consistent with 100%.Comment: 29 pages, 8 figures, 2 table
    corecore